Wikia

All Birds Wiki

Bird anatomy

Talk0
13,452pages on
this wiki
Birdmorphology
External anatomy (topography) of a typical bird: 1 Beak, 2 Head, 3 Iris, 4 Pupil, 5 Mantle, 6 Lesser coverts, 7 Scapulars, 8 Coverts, 9 Tertials, 10 Rump, 11 Primaries, 12 Vent, 13 Thigh, 14 Tibio-tarsal articulation, 15 Tarsus, 16 Feet, 17 Tibia, 18 Belly, 19 Flanks, 20 Breast, 21 Throat, 22 Wattle

Bird anatomy, or the physiological structure of birds' bodies, shows many unique adaptations, mostly aiding flight. Birds have a light skeletal system and light but powerful musculature which, along with circulatory and respiratory systems capable of very high metabolic rates and oxygen supply, permit the bird to fly. The development of a beak has led to evolution of a specially adapted digestive system. These anatomical specializations have earned birds their own class in the vertebrate phylum.

Skeletal systemEdit

File:Squelette oiseau.svg
A stylised dove skeleton. Key:
1. skull
2. cervical vertebrae
3. furcula
4. coracoid
5. uncinate processes of ribs
6. keel
7. patella
8. tarsometatarsus
9. digits
10. tibia (tibiotarsus)
11. fibia (tibiotarsus)
12. femur
13. ischium (innominate)
14. pubis (innominate)
15. illium (innominate)
16. caudal vertebrae
17. pygostyle
18. synsacrum
19. scapula
20. lumbar vertebrae
21. humerus
22. ulna
23. radius
24. carpus
25. metacarpus
26. digits
27. alula

The bird skeleton is highly adapted for flight. It is extremely lightweight but strong enough to withstand the stresses of taking off, flying, and landing. One key adaptation is the fusing of bones into single ossifications, such as the pygostyle. Because of this, birds usually have a smaller number of bones than other terrestrial vertebrates. Birds also lack teeth or even a true jaw, instead having evolved a beak, which is far more lightweight. The beaks of many baby birds have a projection called an egg tooth, which facilitates their exit from the amniotic egg.

Birds have many bones that are hollow (pneumatized) with criss-crossing struts or trusses for structural strength. The number of hollow bones varies among species, though large gliding and soaring birds tend to have the most. Respiratory air sacs often form air pockets within the semi-hollow bones of the bird's skeleton.[1] Some flightless birds like penguins and ostriches have only solid bones, further evidencing the link between flight and the adaptation of hollow bones.[citation needed]

File:BirdAirsacs.jpg
Air-sacs and their distribution

Birds also have more cervical (neck) vertebrae than many other animals; most have a highly flexible neck consisting of 13-25 vertebrae. Birds are the only vertebrate animals to have a fused collarbone (the furcula or wishbone) or a keeled sternum or breastbone. The keel of the sternum serves as an attachment site for the muscles used for flight, or similarly for swimming in penguins. Again, flightless birds, such as ostriches, which do not have highly developed pectoral muscles, lack a pronounced keel on the sternum. It is noted that swimming birds have a wide sternum, while walking birds had a long or high sternum while flying birds have the width and height nearly equal.[2]

Birds have uncinate processes on the ribs. These are hooked extensions of bone which help to strengthen the rib cage by overlapping with the rib behind them. This feature is also found in the tuatara Sphenodon. They also have a greatly elongate tetradiate pelvis as in some reptiles. The hindlimb has an intra-tarsal joint found also in some reptiles. There is extensive fusion of the trunk vertebrae as well as fusion with the pectoral girdle. They have a diapsid skull as in reptiles with a pre-lachrymal fossa (present in some reptiles). The skull has a single occipital condyle.[3]

The skull consists of five major bones: the frontal (top of head), parietal (back of head), premaxillary and nasal (top beak), and the mandible (bottom beak). The skull of a normal bird usually weighs about 1% of the birds total bodyweight. The eye occupies a considerable part of the skull and is surrounded by a sclerotic eye-ring, a ring of tiny bones that surround the eye. This characteristic is also seen in reptiles.

The vertebral column consists of vertebrae, and is divided into three sections: cervical (11-25) (neck), Synsacrum (fused vertebrae of the back, also fused to the hips (pelvis)), and pygostyle (tail).

The chest consists of the furcula (wishbone) and coracoid (collar bone), which two bones, together with the scapula (see below), form the pectoral girdle. The side of the chest is formed by the ribs, which meet at the sternum (mid-line of the chest).

The shoulder consists of the scapula (shoulder blade), coracoid (see The Chest), and humerus (upper arm). The humerus joins the radius and ulna (forearm) to form the elbow. The carpus and metacarpus form the "wrist" and "hand" of the bird, and the digits (fingers) are fused together. The bones in the wing are extremely light so that the bird can fly more easily.

The hips consist of the pelvis which includes three major bones: Illium (top of the hip), Ischium (sides of hip), and Pubis (front of the hip). These are fused into one (the innominate bone). Innominate bones are evolutionary significant in that they allow birds to lay eggs. They meet at the acetabulum (the hip socket) and articulate with the femur, which is the first bone of the hind limb.

The upper leg consists of the femur. At the knee joint, the femur connects to the tibiotarsus (shin) and fibula (side of lower leg). The tarsometatarsus forms the upper part of the foot, digits make up the toes. The leg bones of birds are the heaviest, contributing to a low center of gravity. This aids in flight. A bird's skeleton comprises only about 5% of its total body weight

Birds feetEdit

File:Bird-feets.png
Types of bird feet

Birds feet are classificated as anisodactyl, zygodactyl, heterodactyl, syndactyl or pamprodactyl.[4] The first is the most common arrangement of digits in birds, with three toes forward and one back. This is common in songbirds and other perching birds, as well as hunting birds like eagles, hawks, and falcons.

On the other hand, syndactyly, as it occurs in birds, is like anisodactyly, except that the third and fourth toes (the outer and middle forward-pointing toes), or three toes, are fused together, as in the Belted Kingfisher Ceryle alcyon. This is characteristic of Coraciiformes (Kingfishers, Bee-eaters, Rollers, and relatives).

The zygodactyly (from Greek ζυγον, a yoke) is an arrangement of digits in birds, with two toes facing forward (digits 2 and 3) and two back (digits 1 and 4). This arrangement is most common in arboreal species, particularly those that climb tree trunks or clamber through foliage. Zygodactyly occurs in the parrots, woodpeckers (including flickers), cuckoos (including roadrunners), and some owls. Zygodactyl tracks have been found dating to 120-110 Ma (early Cretaceous), 50 million years before the first identified zygodactyl fossils.[5]

Heterodactyly is like zygodactyly, except that digits 3 and 4 point forward and digits 1 and 2 point back. This is found only in trogons, while pamprodactyl is an arrangement in which all four toes point forward. It is a characteristic of swifts (Apodidae).

Muscular systemEdit

File:WingMuscles.svg
The supracoracoideus works using a pulley like system to lift the wing while the pectorals provide the powerful downstroke

Most birds have approximately 175 different muscles, mainly controlling the wings, skin, and legs. The largest muscles in the bird are the pectorals, or the breast muscles, which control the wings and make up about 15 - 25% of a flighted bird’s body weight. They provide the powerful wing stroke essential for flight. The muscle medial (underneath) to the pectorals is the supracoracoideus. It raises the wing between wingbeats. The supracoracoideus and the pectorals together make up about 25 – 35% of the bird's full body weight.

The skin muscles help a bird in its flight by adjusting the feathers, which are attached to the skin muscle and help the bird in its flight maneuvers.

There are only a few muscles in the trunk and the tail, but they are very strong and are essential for the bird. The pygostyle controls all the movement in the tail and controls the feathers in the tail. This gives the tail a larger surface area which helps keep the bird in the air.

Integumentary systemEdit

See also Beak, Comb (anatomy), Lore and Gular skin

File:Straußenfuß.jpg
Ostrich foot integument (podotheca).

ScalesEdit

The scales of birds are composed of the same keratin as beaks, claws, and spurs. They are found mainly on the toes and metatarsus, but may be found further up on the ankle in some birds. Most bird scales do not overlap significantly, except in the cases of kingfishers and woodpeckers. The scales and scutes of birds are thought to be homologous to those of reptiles and mammals.[6]

Bird embryos begin development with smooth skin. On the feet, the corneum, or outermost layer, of this skin may keratinize, thicken and form scales. These scales can be organized into;

  1. Cancella – minute scales which are really just a thickening and hardening of the skin, crisscrossed with shallow grooves.
  2. Reticula – small but distinct, separate, scales. Found on the lateral and medial surfaces (sides) of the chicken metatarsus. These are made up of alpha-keratin.[7]
  3. Scutella – scales that are not quite as large as scutes, such as those found on the caudal, or hind part, of the chicken metatarsus.
  4. Scutes – the largest scales, usually on the anterior surface of the metatarsus and dorsal surface of the toes. These are made up of beta-keratin as in reptilian scales.[7]

The rows of scutes on the anterior of the metatarsus can be called an acrometatarsium or acrotarsium.

Feathers can be intermixed with scales on some birds' feet. Feather follicles can lie between scales or even directly beneath them, in the deeper dermis layer of the skin. In this last case, feathers may emerge directly through scales, and be encircled at the plane of emergence entirely by the keratin of the scale.[6]

Rhamphotheca and PodothecaEdit

The bills of many waders have Herbst corpuscles which help them detect prey hidden under wet sand using minute pressure differences in the water.[8] All extant birds can move the parts of the upper jaw relative to the brain case. However this is more prominent in some birds and can be readily detected in parrots.[9]

The region between the eye and bill on the side of a bird's head is called the lore. This region is sometimes featherless, and the skin may be tinted, as in many species of the cormorant family.

The scaly covering present on the foot of the birds is called podotheca.

Respiratory systemEdit

File:Airsacs-bird.jpg
Air always flows from right (posterior) to left (anterior) k through a bird's lungs during both inhalation and exhalation. Key to a Common Kestrel's circulatory lung system: 1 cervical air sac, 2 clavicular air sac, 3 cranial thoracic air sac, 4 caudal thoracic air sac, 5 abdominal air sac (5' diverticulus into pelvic girdle), 6 lung, 7 trachea

Due to their high metabolic rate required for flight, birds have a high oxygen demand. Development of an efficient respiratory system enabled the evolution of flight in birds. Birds ventilate their lungs by means of air sacs.

These sacs do not play a direct role in gas exchange, but act like bellows to move air through the respiratory system, allowing the lungs to maintain a fixed volume with fresh air constantly flowing through them.[1]

Three distinct sets of organs perform respiration—the anterior air sacs (interclavicular, cervicals, and anterior thoracics), the lungs, and the posterior air sacs (posterior thoracics and abdominals). The posterior and anterior air sacs, typically nine, expand during inhalation. Air enters the bird via the trachea. Half of the inhaled air enters the posterior air sacs, the other half passes through the lungs and into the anterior air sacs. Air from the anterior air sacs empties directly into the trachea and out the bird's mouth or nares. The posterior air sacs empty their air into the lungs. Air passing through the lungs as the bird exhales is expelled via the trachea. Some taxonomic groups (Passeriformes) possess 7 air sacs, as the clavicular air sacs may interconnect or be fused with the cranial thoracic air sacs.

File:BirdRespiration.svg
Birds lungs obtain fresh air during both exhalation and inhalation

As air flows through the air sac system and lungs, there is no mixing of oxygen-rich air and oxygen-poor, carbon dioxide-rich, air as in mammalian lungs. Thus, the partial pressure of oxygen in a bird's lungs is the same as the environment, and so birds have more efficient gas-exchange of both oxygen and carbon dioxide than do mammals. In addition, air passes through the lungs in both exhalation and inspiration.

Avian lungs do not have alveoli, as mammalian lungs do, but instead contain millions of tiny passages known as parabronchi, connected at either ends by the dorsobronchi and ventrobronchi. Air flows through the honeycombed walls of the parabronchi into air vesicles, called atria, which project radially from the parabronchi. These atria give rise to air capillaries, where oxygen and carbon dioxide are traded with cross-flowing blood capillaries by diffusion.[10]

Birds also lack a diaphragm. The entire body cavity acts as a bellows to move air through the lungs. The active phase of respiration in birds is exhalation, requiring muscular contraction.

The syrinx is the sound-producing vocal organ of birds, located at the base of a bird's trachea. As with the mammalian larynx, sound is produced by the vibration of air flowing through the organ. The syrinx enables some species of birds to produce extremely complex vocalizations, even mimicking human speech. In some songbirds, the syrinx can produce more than one sound at a time.

Circulatory systemEdit

Birds have a four-chambered heart, in common with humans, most mammals, and some reptiles (namely the crocodilia). This adaptation allows for an efficient nutrient and oxygen transport throughout the body, providing birds with energy to fly and maintain high levels of activity. A Ruby-throated Hummingbird's heart beats up to 1200 times per minute (about 20 beats per second).[11]

Digestive systemEdit

File:PigeonAnatomy.png
Alimentary canal of the bird exposed.

Many birds possess a muscular pouch along the esophagus called a crop. The crop functions to both soften food and regulate its flow through the system by storing it temporarily. The size and shape of the crop is quite variable among the birds. Members of the order Columbiformes, such as pigeons, produce a nutritious crop milk which is fed to their young by regurgitation. Birds possess a ventriculus, or gizzard, composed of four muscular bands that rotate and crush food by shifting the food from one area to the next within the gizzard. The gizzard of some species contains small pieces of grit or stone swallowed by the bird to aid in the grinding process of digestion, serving the function of mammalian or reptilian teeth. The use of gizzard stones is a similarity between birds and dinosaurs, which left gizzard stones called gastroliths as trace fossils.

Drinking behaviorEdit

There are four general ways in which birds drink: using gravity itself, sucking, use of the tongue, and deriving water entirely from food.

Most birds are unable to swallow by the "sucking" or "pumping" action of peristalsis in their esophagus (as humans do), and drink by repeatedly raising their heads after filling their mouths to allow the liquid to flow by gravity, a method usually described as "sipping" or "tipping up".[12] The notable exception is the Columbiformes; in fact, according to Konrad Lorenz in 1939,

"one recognizes the order by the single behavioral characteristic, namely that in drinking the water is pumped up by peristalsis of the esophagus which occurs without exception within the order. The only other group, however, which shows the same behavior, the Pteroclidae, is placed near the doves just by this doubtlessly very old characteristic."[13]

Although this general rule still stands, since that time, observations have been made of a few exceptions in both directions.,[12][14]

In addition, specialized nectar feeders like sunbirds (Nectariniidae) and hummingbirds (Trochilidae) drink by using protrusible grooved or trough-like tongues, and parrots (Psittacidae) lap up water.[12]

Many seabirds have glands near the eyes that allow them to drink seawater. Excess salt is eliminated from the nostrils. Many desert birds get the water that they need entirely from their food. The elimination of nitrogenous wastes as uric acid reduces the physiological demand for water.[15]

Nervous systemEdit

See also Bird vision and Avian pallium

Birds have acute eyesight - raptors have vision eight times sharper than humans - thanks to higher densities of photoreceptors in the retina (up to 1,000,000 per square mm in Buteos, compared to 200,000 for humans), a high number of optic nerves, a second set of eye muscles not found in other animals, and, in some cases, an indented fovea which magnifies the central part of the visual field. Many species, including hummingbirds and albatrosses, have two foveas in each eye. Many birds can detect polarised light.

Birds have a large brain to body mass ratio. This is reflected in the advanced and complex bird intelligence.

Genitourinary systemEdit

File:Baby bird learning to fly.jpg
Fledgling

Although most male birds have no external sex organs, the male does have two testes which become hundreds of times larger during the breeding season to produce sperm.[16] The testes in male birds are generally asymmetric with most birds having a larger left testis.[17] Female birds in most families have only one functional ovary (the left one), connected to an oviduct — although two ovaries are present in the embryonic stage of each female bird. Some species of birds have two functional ovaries, and the order Apterygiformes always retain both ovaries.[18][19]

In the males of species without a phallus (see below), sperm is stored in the semenal glomera within the cloacal protuberance prior to copulation. During copulation, the female moves her tail to the side and the male either mounts the female from behind or in front (as in the stitchbird), or moves very close to her. The cloacae then touch, so that the sperm can enter the female's reproductive tract. This can happen very fast, sometimes in less than half a second.[20]

The sperm is stored in the female's sperm storage tubules for a week to more than a 100 days,[21] depending on the species. Then, eggs will be fertilized individually as they leave the ovaries, before the shell is calcified (for species that produce hard shells) in the oviduct. After the egg is laid by the female, the embryo continues to develop in the egg outside the female body.

File:Laughing Gull juvenile.jpg
A juvenile Laughing Gull

Many waterfowl and some other birds, such as the ostrich and turkey, possess a phallus. The length is thought to be related to sperm competition.[22] When not copulating, it is hidden within the proctodeum compartment within the cloaca, just inside the vent.

After the eggs hatch, parents provide varying degrees of care in terms of food and protection. Precocial birds can care for themselves independently within minutes of hatching; altricial hatchlings are helpless, blind, and naked, and require extended parental care. The chicks of many ground-nesting birds such as partridges and waders are often able to run virtually immediately after hatching; such birds are referred to as nidifugous. The young of hole-nesters, on the other hand, are often totally incapable of unassisted survival. The process whereby a chick acquires feathers until it can fly is called "fledging".

Some birds, such as pigeons, geese, and Red-crowned Cranes, remain with their mates for life and may produce offspring on a regular basis.

See alsoEdit

NotesEdit

  1. ^ a b Ritchison, Gary. "Ornithology (Bio 554/754):Bird Respiratory System". Eastern Kentucky University. http://people.eku.edu/ritchisong/birdrespiration.html. Retrieved 2007-06-27. 
  2. ^ Ayhan Duezler, Ozcan Ozgel, Nejdet Dursun (2006) Morphometric Analysis of the Sternum in Avian Species. Turk. J. Vet. Anim. Sci. 30:311-314
  3. ^ Wing, Leonard W. (1956) Natural History of Birds. The Ronald Press Company. [1]
  4. ^ Proctor, N. S. & Lynch, P. J. (1998) Manual of Ornithology: Avian Structure & Function. Yale University Press. ISBN 0300076193
  5. ^ "Earliest zygodactyl bird feet: evidence from Early Cretaceous roadrunner-like tracks". Naturwissenschaften. 2007. http://www.springerlink.com/content/hl850l4128573g33/. 
  6. ^ a b Lucas, Alfred M. (1972). Avian Anatomy - integument. East Lansing, Michigan, USA: USDA Avian Anatomy Project, Michigan State University. pp. 67, 344, 394–601. 
  7. ^ a b Peter R. Stettenheim (2000) The Integumentary Morphology of Modern Birds—An Overview. American Zoologist 2000 40(4):461-477; doi:10.1093/icb/40.4.461
  8. ^ Piersma, Theunis; Renee van Aelst, Karin Kurk, Herman Berkhoudt and Leo R. M. Maas (1998). "A New Pressure Sensory Mechanism for Prey Detection in Birds: The Use of Principles of Seabed Dynamics?". Proceedings: Biological Sciences 265 (1404): 1377–1383. doi:10.1098/rspb.1998.0445. 
  9. ^ Zusi, R L (1984). "A Functional and Evolutionary Analysis of Rhynchokinesis in Birds.". Smithsonian Contributions to Zoology 395. Template:Hdl. 
  10. ^ Bird lungs
  11. ^ June Osborne (1998). The Ruby-Throated Hummingbird. University of Texas Press. p. 14. ISBN 0-292-76047-7. 
  12. ^ a b c "Drinking Behavior of Mousebirds in the they are warm blooded. Namib Desert, Southern Africa "; Tom J. Cade and Lewis I. Greenwald; The Auk, V.83, No. 1, January, 1966 pdf
  13. ^ K. Lorenz, Verhandl. Deutsch. Zool. Ges., 41 [Zool. Anz. Suppl. 12]: 69-102, 1939
  14. ^ "Drinking Behavior of Sandgrouse in the Namib and Kalahari Deserts, Africa"; Tom J. Cade, Ernest J. Willoughby, and Gordon L. Maclean; The Auk, V.83, No. 1, January, 1966 pdf
  15. ^ Gordon L. Maclean (1996) The Ecophysiology of Desert Birds. Springer. ISBN 3-540-59269-5
  16. ^ A study of the seasonal changes in avian testes Alexander Watson, J. Physiol. 1919;53;86-91, 'greenfinch (Carduelis chloris)', 'In early summer (May and June) they are as big as a whole pea and in early winter (November) they are no bigger than a pin head'
  17. ^ Lake, PE (1981). "Male genital organs". In King AS, McLelland J. Form and function in birds. 2. New York: Academic. pp. 1–61. 
  18. ^ Kinsky, FC (1971). "The consistent presence of paired ovaries in the Kiwi(Apteryx) with some discussion of this condition in other birds". Journal of Ornithology 112 (3): 334–357. doi:10.1007/BF01640692. 
  19. ^ Fitzpatrick, FL (1934). "Unilateral and bilateral ovaries in raptorial birds". Wilson Bulletin 46 (1): 19–22. http://elibrary.unm.edu/sora/Wilson/v046n01/p0019-p0022.pdf. 
  20. ^ Lynch, Wayne; Lynch, photographs by Wayne (2007). Owls of the United States and Canada : a complete guide to their biology and behavior. Baltimore: Johns Hopkins University Press. pp. 151. ISBN 0-8018-8687-2. 
  21. ^ Birkhead, TR; A. P. Moller (1993). "Sexual selection and the temporal separation of reproductive events: sperm storage data from reptiles, birds and mammals". Biological Journal of the Linnean Society 50 (4): 295–311. doi:10.1111/j.1095-8312.1993.tb00933.x. 
  22. ^ McCracken, KG (2000). "The 20-cm Spiny Penis of the Argentine Lake Duck (Oxyura vittata)". The Auk 117 (3): 820–825. doi:10.1642/0004-8038(2000)117[0820:TCSPOT]2.0.CO;2. http://elibrary.unm.edu/sora/Auk/v117n03/p00820-p00825.pdf. 

ReferencesEdit

External linksEdit


This page uses Creative Commons Licensed content from Wikipedia (view authors).
Anatomy of an amiotic egg This article is part of Project Glossary, a All Birds project that aims to write comprehensive articles on each term related to animals.


Little Pied Cormorant This article is part of Project Anatomy, a All Birds project that aims to write comprehensive articles on each anatomical term related to birds.
Advertisement | Your ad here

Around Wikia's network

Random Wiki